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Abstract 

Radial thin film flows are obtained by the impingement of circular free liquid jets on surfaces. The surfaces may be in 
the form of a circular plate, cone or that of a sphere. These flows are governed by the effects of inertia, viscosity, gravity 
and surface tension. Based on the film Reynolds number and Froude number, a circular hydraulic jump can be obtained 
in such flows. In this paper a new integral method is proposed for such axisymmetric laminar flows. The boundary layer 
approximation is used. The equations are solved using a cubic velocity profile, considering the radial hydrostatic pressure 
gradient in the film flow. In the new approach the coefficients of the cubic profile depend on the pressure gradient and 
body force terms and are allowed to vary with radial distance. Thus for example, separation can be predicted. The effect 
of the jet Reynolds number. Froude number and the surface dimension is considered. For flows with the circular 
hydraulic jump, the region upstream and downstream of the jump is solved separately using the boundary condition at 
the surface edge. <Q 1998 Elsevier Science Ltd. All rights reserved. 

Nomenclature 
u, h. c coefficients in the velocity profile 
u,, radius of nozzle 
Fr, = Uf;/gu,, jet Froude number 
yY, gq components of g in .I- and ,r direction 
Itcr critical value of tilm thickness 
h(s) liquid film thickness at x 
I, = {d,f’dq 
I, = l:, ,I’ dtj constants obtained from velocity profile 
I, = j;, 1” dry 
I” = J”:, f  ” drl 
Q = 2q flow rate 
Re, = U,,u,,:r jet Reynolds number 
f?, hydraulic jump radius 
R, plate radius 
R, radius of sphere 
14,‘ZJ.x) =.f’(rr) assumed velocity profile 
ci,, critical value of average film velocity 
C,, average jet velocity 
U(.Y) free surface velocity 
.Y,) radius of jet at point of impingement 
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.Y horizontal distance along the surface 
? vertical distance perpendicular to the surface 
fl = ~s/h(.v) nondimensional vertical coordinate. 

1. Introduction 

The flow of liquids in thin films is frequently observed 
in every day life as in flow of rain water on window panes 
and roofs, flows in a kitchen sink etc. Thin liquid films 
also find applications in industry as in during evaporation 
or condensation on a solid surface in a compact heat 
exchanger or cooling tower, spin coating in metal indus- 
tries, and impingement cooling of solid wall with a liquid 
jet. 

Radial thin film flows form a special class of the film 
flows and are obtained when a circular free liquid jet 
impinges on a surface. The surface may be in form of Aat 
circular disk. surface of a cone or that of a sphere. When 
such a jet impinges normally. the jet spreads out into a 
thin film flowing radially away from the stagnation point. 
The effects of inertia. viscosity, gravity and surface ten- 
sion govern such flows. As the film spreads out, the film 
thickness decreases and then increases and the film flows 
under the action of an adverse hydrostatic pressure gradi- 
ent. For flows over surfaces of cones and spheres, the flow 
accelerates under the action of gravity which balances 
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the effects of the adverse pressure gradient. The adverse 
pressure gradient can cause separation of the film flow at 
some radial distance leading to formation of a circular 
hydraulic jump. The flow in the layer upstream of the 
jump may remain laminar for moderately large Reynolds 
numbers. but its velocity is seldom uniform, except pos- 
sibly near the beginning of the layer. owing to the action 
of viscosity. The Froude number near the impact region 
of the jet is quite large, being of the order of the ratio of 
the head of the falling liquid to the size of the cross 
section of the jet. 

One of the earliest works done on the study of such a 
radially spreading thin film flow on a horizontal surface 
was by Watson [I]. Using the boundary layer approxi- 
mation, Watson developed a similarity solution in the 
region upstream of the jump. The jump location was 
obtained by knowing the downstream film height (set by 
a barrier) and using the jump condition. He solved for 
the laminar and (in approximate form) turbulent flow, 
neglecting the effect of the pressure gradient due to grav- 
ity. Earlier, Tani [2] had solved the boundary layer equa- 
tion, with the gravitational pressure gradient term 
included using a parabolic velocity profile. He postulated 
that flow separation is due to an adverse hydrostatic 
pressure gradient which caused the hydraulic jump. 

Several authors have solved for the fow both upstream 
and downstream of the jump with the gravity term 
included and by assuming some form for the velocity 
profile. The two solutions are matched at the jump by 
using the jump conditions. Thomas er crl. [3] and Rehman 
rt al. [4] assume a parabolic velocity profile for solving 
the flow in the region upstream and downstream of the 
hydraulic jump. They consider the effect of rotation and 
the pressure gradient term on the flow of radial and 
planar thin film flows. Bohr et rrl. [S] gave a scaling 
relation for the jump position for flow on infinitely large 
plates without a barrier. The boundary condition at the 
edge of the plate is of interest; critical flow (unity Froude 
number) or infinite slope of the film has been used as 
edge condition. Buyevich and Ustinov [h] assume a cubic 
velocity profile with constant coefficients. Analytical 
expressions for the flow upstream of the jump are 
obtained by neglecting the gravity term. 

Radial thin film flows over cones and spheres obtained 
by circular jet impingement have received less attention. 
They may not be accompanied by a hydraulic jump. In 
addition to the effects of inertia and viscosity. the effect 
of gravitational acceleration is felt due to the inclination 
as well as changing height. Zollars ct N/. [7] developed an 
asymptotic solution for flow of a low Reynolds number 
thin film down a right circular cone. The solution incor- 
porates the effects of surface tension. 

Cerro ef a/. [X] studied the rapid thin film flows at 
relatively large Reynolds numbers and capillary numbers 
through solutions of the governing equations using Kar- 
man-Pohlhausen method. Solutions for dip coating, fall- 

ing films and liquid wall jets are obtained. Ghim et al. [9] 
reported on the boundary conditions in rectangular and 
cylindrical co-ordinates for the free surface of a thin film 
flow. Higgins rt al. [lo] derived the exact differential and 
the integrodifferential equations for the shape and change 
of shape of one-dimensional free surface flows. These 
equations similar to integral equations for boundary 
layer type of flow can be solved by imposing the appro- 
priate boundary conditions Mudawar et al. [1 1] studied 
the mass and momentum transport in smooth falling 
laminar liquid films at relatively high Reynolds number. 
Velocity measurements using LDV and modeling via the 
integral approach were used to obtain the velocity of the 
thin falling liquid films. 

The presence of a reversed flow region downstream of 
the hydraulic jump is further confirmed by experiments 
of Nakaryakov et L/I. [ 121 and Craik et al. [13]. Though 
the presence of such an adverse pressure gradient had 
been taken into account in the governing equations by 
many investigators, they solved the equations in integral 
form by assuming a parabolic velocity profile, where the 
coefficients in the profile are assumed constants being 
obtained from the boundary conditions or by a cubic 
velocity profile without the pressure gradient term. The 
effect of the adverse pressure gradient on the change in 
the velocity profile, and finally leading to separation has 
not been considered. 

In this paper. integral relations of the momentum and 
mechanical energy for the flow of a thin radial liquid film 
formed by impingement of a circular liquid jet over a 
general axisymmetric body have been derived. These free 
surface film flows are nearly unidirectional, bounded, 
axisymmetric. viscous, and incompressible liquid flows at 
high Reynolds number, in which the pressure is sub- 
stantially hydrostatic in the transverse direction. Viscous 
shear is virtually absent at the free surface and the capil- 
lary forces are negligible. The velocity, pressure and fihn 
thickness are governed by viscous. inertial and gravity 
(or other external) forces only. In all the previous works 
on the integral analysis of the film flows the coefficients 
in the assumed polynomials fbr the velocity profile have 
been assumed to be constants. The new feature in the 
present paper is that the coefficient values depend on 
the pressure gradient and the body force terms and are 
allowed to vary with radial distance. Also. these integral 
equations differ from those normally used in boundary 
layer flows in the sense that the coefficients in the assumed 
cubic velocity profile are unknown (I priori and have to 
be determined along the flow direction. The pressure is 
not impressed on the flow from the external inviscid flow 
as m the case of normal boundary layer flows. but is 
purely hydrostatic to be determined from the varying film 
thickness. The effect of varying jet Reynolds number, 
Froude number and the surface radius on the film thick- 
ness and surface velocity of the thin film is considered. 
The rest of the paper is outlined as follows. In Section 2 
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the flow being modeled is considered and the integral 
equations for both the developing and the fully developed 
region are derived. Also the condition at the edge of the 
surface is derived. In Section 3 some representative results 
for flow over a flat plate, cone and sphere are presented. 

2. Problem formulation 

In this section, a detailed description of the problem 
is given and the integral relations for the laminar high 
Reynolds number radial flow of a thin liquid film over 
axisymmetric surfaces are derived. Flows at very low 
Reynolds number such as creeping flows are not con- 
sidered here. The laminar film flows are obtained by 
the impingement of circular laminar free liquid jets on 
surfaces. 

As shown in Fig. 1 the fow regime of the jet impinging 
on a general axisymmetric body can be divided into the 
following parts. 

Region 1 : The stagnation point region whose dimen- 
sions are of the order of the jet radius, .Y(,. Within this 
region the main flow velocity grows rapidly from zero 
to the undisturbed flow velocity li,,. 
Region 2 : The region of boundary layer type of flow 
for s > x,,. where the boundary layer is developing and 
the velocity outside the boundary layer is dependent 
on the how geometry. 
Region 3: The region of fully developed flow, where 
the viscous effects are felt up to the free surface. 
Region 4: The region just before the hydraulic jump 
where the gravity etl‘ects are important and an adverse 
pressure gradient is present. 
Region 5 : The region of the hydraulic jump including 
the separation eddy. 
Region 6: The region of the flow downstream of the 
hydraulic jump. Further the flow is assumed to remain 

Fig. 1. Schematic of radial thin film flow over an axisymmetric 
surface. 

laminar in the region both upstream and downstream 
of the separation region. 

We note that viscous effects are felt up to the free 
surface downstream of region 2. Upstream of the jump 
the flow is supercritical and subcritical at the down- 
stream. In regions 4, 5 and 6, the local Froude number is 
of order one and gravity is important. Not all regions 
may exist in a given flow case. If  the surface radius is 
small enough a hydraulic jump will not exist. For flows 
over surfaces of cone and sphere the hydraulic jump 
might not exist and the flow may remain supercritical 
until the edge of the surface. 

3. Viscous analysis 

The viscous analysis is carried out for an incom- 
pressible, steady. axisymmetric and laminar flow of a thin 
liquid film. Invoking the boundary layer approximation 
the equations are : 

Continuity : 

Momentum : 

(1) 

(2) 

For the case of flow over the surface of a cone : 

r=scosH; g,=gsinO: 9, =gcostl. 

For a sphere we replace r by. 

r = R, sin -y 
i) R, 

and g, and gr by. 

g, = gsin t ; 0 
.\I ’ 

g, =gcos F i 1 >I 
(5) 

The pressure term in the standard boundary layer 
equation is replaced by the hydrostatic pressure variation 
along the radial direction. This term is obtained from the 
r momentum equation on the assumption that the liquid 
film is shallow and that the vertical velocities are small 
compared to streamwise velocities and that the vertical 
variations (through the layer) are much more rapid than 
those in the streamwise direction. 

4. Developing region 

We first consider the flow in the region .Y > .Y~). Here the 
streamwise pressure gradient is assumed to be practically 
absent and velocity outside the boundary layer is assumed 
to be constant being equal to L/,,. Further we assume that 
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the length of the region is small enough so that the effects 
of gravitational acceleration can be neglected. 

For case of flow over a sphere we assume that the 
developing region of the flow, which in this case will be 
region very close to the stagnation point, can be approxi- 
mated to be of the order of the jet radius. Thus the 
equations for the fully developed flow region are valid 
from just near the stagnation point region. 

The final form of the momentum integral equations 
are arrived at by integrating the boundary layer equations 
without the pressure gradient and the gravitational accel- 
eration terms, from 0 to 8(.x) the boundary layer thick- 
ness, and noting that velocity is continuous at CT(X). The 
resulting equations are : 

Continuity : 

Q = 2nr u dy + U&r(x) - 6(x)) 
I 

Momentum : 

Boundary Conditions : 

u(x,O) = 0 

u(9, I.) = UC, at !: = 6(.u) 

al4 
- = 0 
3.L 

at y  = 6(\-). 

We use an additional condition. as in the Karman- 
Pohlhausen method of 

d’u 
,, -- = 0. 

2y iv=0 

This is derived by applying the momentum equation (2) 
at the wall. 

Integral analysis requires the choice of the appropriate 
velocity profiles. The above integral equations are solved 
by assuming a cubic velocity profile of the form, 

the coefficients u, h, c are obtained from the boundary 
conditions and are equal to 1.5, 0.0, -0.5 respectively. 
Substituting the above velocity profile into the integral 
equations and calculating the momentum flux and the 
viscous shear terms and using the continuity equation. 
we obtain a relationship for the development of the 
boundary layer and height of the liquid film with radius 
which are of the following form for the horizontal plate, 

6(x) = 4.736,~” 

The above equations are equivalent to that derived 
by Watson [1] and give an explicit relation for the film 
thickness and the boundary layer thickness. These 
relations are valid till the boundary layer reaches the free 
surface where 6(.x) = /Z(K) and this occurs at a radius 
given by, 

.y = 0.3054 32 ’ 3 
F I I’ 

(11) 

The above set of equations for the developing region 
of the flow are assumed to be valid for all configurations. 
This assumption does not strictly apply to the flow over 
a cone or over a sphere where there is acceleration of the 
free stream. 

5. Fully developed region 

Next we consider the flow in the region where the 
boundary layer thickness is of the order of the film thick- 
ness and hence the viscous effects are felt up to the free 
surface (region 3). For the fully developed region the 
integral equations are derived from the boundary layer 
equations including the pressure gradient term and the 
gravitational acceleration term. The final form of the 
momentum integral equations are arrived at by inte- 
grating both sides of the governing equations from 0 to 
h(.w) and noting that shear stress at the free surface is 
zero. This is true as long as the effects of surface tension 
due to curvature effects and shear stress due to air at the 
free surface are small. 
Continuity : 

Q = 2nr [“‘udr 
I’ 0 

Momentum : 

(12) 

Boundary Conditions : 

UI> -(, = OU(.K,J~) = c&Y) 

sty = h(r): = 0 at>,= /7(.u) (14) 

Additional Condition : 

(15) 

The mechanical energy integral equation are derived 
for the flow ofa radial thin film on a general axisymmetric 
body. The energy integral analysis is instructive as it is 
possible to study each of the kinetic energy, potential 
energy and viscous dissipation terms separately. The 
energy integral analysis is restricted to the fully developed 
region. The energy integral equations are derived from 
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the governing equations by the scalar multiplication of 
the momentum equation with the tangential velocity 
component and then integrating over the liquid film 
height from 0 to h(x). 

Energy : 

d WX) u3y 

---s d.x ” 
yd?j = -vr (16) 

As for the case of the developing boundary layer region 
we again assume a cubic velocity profile (8). The 
coefficients a, h. I’ are obtained from the boundary con- 
ditions. It must be noted that they are not constants, 
being proportional to the streamwise derivative of height 
and the gravitational acceleration term. The coefficients 
derived from the conditions take the form : 

u= L-f (17) 

(‘= -o.i-; (18) 
/, = g,Kd* dh s.h(x)2 ~-_- 

211 U(x) dx 2v U(x) (19) 

For the case of flow over a flat circular plate and 
for flow over surfaces of cones with small cone angles, 
separation can take place at some radial distance in the 
developed region of the flow regime due to the presence 
of an adverse pressure gradient. As the governing equa- 
tions are no longer valid after the region of separation 
it is necessary to predict the film height and radius at 
separation. The criterion for steady separation, 

(20) 

i.e., zero wall shear stress, gives the value of the constants 
u. b, c in the velocity profile to be 0.0, 3.0, -2.0 respec- 
tively. 

For large cone angles and for flow over the surface of 
sphere the pressure gradient term can be neglected as 
compared to the acceleration term. For such cases, using 
the continuity equation and the expression for h from the 
boundary condition we get a cubic equation for h. 

Without the pressure gradient term and using the inte- 
gral form of the continuity equation we get: 

(21) 

where 

3.0-h 
I, = --__ 

2 (22) 

Substituting for I, in terms of h we get, 

25h 5b2 h’ - 
32 

Since for the flow downstream of the hydraulic jump 

the film thickness and the gradients in height are large it 
is not possible to solve the equations downstream of the 
jump using a velocity profile with variable coefficients. 
We choose a velocity profile for solutions of the equations 
which corresponds to the coefficient in the velocity profile 
h being equal to zero. With this simpliciation the 
coefficients u and care equal to 1.5 and -0.5 respectively. 

6. Integral equations 

Substituting the assumed velocity profiles into the 
equations we obtain the integral equations for the fully 
developed region in the dimensional form as follows : 

Continuity : 

Q = 2nrhU(.x)I, (24) 
Momentum : 

where 

g\h2 d/t f;; = A- _ U(x) du 
\lU(x) ds 

and ,f b = -.- ~- 
h ill’ ,=,I 

and in terms of coefficients of the velocity profile: ,fi, 
= 2h;f‘;, = a = 1.5-h/2: 

Energy : 

1 r* U(X) = -v----+gx. 
I,h(s)’ 

The first term in the energy integral equation corresponds 
to the kinetic energy, the second to the potential energy 
and the third term is the energy dissipation term. In all 
the results presented in this paper the continuity and 
momentum equations are solved. Of course, the energy 
equation can be used instead of the momentum equation. 
I,. Iz, I,, I; are values of the integral obtained from the 
assumed velocity profile. The values of the various inte- 
grals as a function of h, the coefficient in the velocity 
profile is given in the Table I. 

7. Surface edge boundary condition 

Downstream of the jump region the flow reattaches as 
reported by Craik rt al. [ 131. Further downstream of the 
separation region the thin film falls freely at the edge of 
the plate. The boundary condition at the plate edge has 
an effect on the flow downstream of the separation region. 
This boundary condition in turn depends on the plate 
radius. If  the plate radius is sufficiently small such that 
no separation occurs, then the fow regime remains super- 
critical and the edge boundary condition has no effect on 
the flow upstream. If the plate radius is sufficiently large 
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Table I 
Values of integrals of velocity profile for various values of h (coefficient in velocit) profile) 

h I; Velocity profile 

~ 1.0 0.666 0.533 1.133 0.4571s Parabolic 
0.0 0.625 0.485 I.2 0.409375 Zero gradient pressure 
I .o 0.5833 0.44285 I.133 0.36875 Adverse gradient pressure 
2.0 0.54166 0.40476 I I.1333 0.335275 Adverse gradient pressure 
3.0 0.5 0.37142 1.2 0.3071 Separating 

to allow for separation to take place due to an adverse 
pressure gradient the flow downstream of the separation 
region flows under the dominant action of gravity and 
viscosity and remains subcritical. before accelerating as it 
falls freely from the edge of the plate. The edge boundary 
condition now influences the flow downstream of the 
separation region. 

We solve the energy integral equation for the flow 
downstream of the separation region. The plate radius 
is assumed to be suficiently large enough to allow for 
separation to occur at some radial location on the plate. 

We propose that at a certain radius. corresponding to 
the plate radius, the flow downstream of the separation 
region reaches a state of minimum energy given by. 

dE 
d/r ’ 

(27) 

where h is the film thickness. That is. the flow adjusts 
itself such that maximum dissipation of the initial energy 
occurs. Here Ecorresponds to the (L.H.S.) term in brack- 
ets of (24). For minimum energy. 

dE y’l, -= 
dk 

--+.q,=O 
Y-/;h3 

For minimum energy at any x = .I-~,. .yP being the plate 
radius, the critical value of the film thickness is given by, 

The Froude number based on average velocity. cor- 
responding to this case of minimum energy is. 

which for the assumed cubic velocity for the energy inte- 
gral takes the value of 0.59 and for a uniform profile the 
value of 1 .O. 

For case of flow over the surface of a sphere. where 
the flow is always accelerated, separation might not occur 
over the surface. In such cases the flow remains super- 
critical all way till it flows down from the surface. and 
the edge boundary condition has no eff‘ect on the flow 
upstream. 

8. Numerical results and discussion 

In this section the solution of the integral equations 
(continuity. momentum and the equation for h) are pre- 
sented for flow over a flat circular plate. the surface of a 
cone and that of a sphere. The integral equations are 
nondimensionalized using the radius of the nozzle for the 
length scale and the average jet velocity for the velocity 
scale. The resulting equations have the jet Reynolds num- 
ber and Froude number as nondimensional parameters. 
The jet Reynolds number, Froude number and the plate 
radius used in the results correspond to some actual 
values in the experiments of Rao [14]. The equations are 
solved iteratively for h. till convergence is achieved. The 
fourth order Runge Kutta method is used for solving the 
equations. Flow downstream of the jump is solved using 
the shooting method with the critical film thickness at 
the plate edge as the boundary condition. The results 
here are presented in terms of nondimensional variables. 

9. Flow over a horizontal plate 

The flow of a thin radial liquid film on a horizontal 
circular plate is considered here. The jet Reynolds num- 
ber Rt;, the Froude number Fr, and the plate radius R, 
play a dominant role in affecting the flow characteristics 
of the radial liquid film. Figure 2 shows the variation of 
the nondimensional film thickness versus the plate radius 
from the stagnation point of the circular jet impingement 
for a particular value of the jet Reynolds number, Froude 
number and the plate radius. As the jet impinges on the 
flat plate. a thin liquid film is obtained. which spreads 
out radially from the stagnatton point region. As the 
boundary layer is still developing the viscous effects are 
not felt up to the free surface. the liquid film thickness 
decreases initially with radial distance, similar to the 
inviscid supercritical film. The boundary layer reaches 
the free surface at a certain radius and the viscous effects 
are felt up to the free surface. Further downstream the 
film thickness now starts increasing as the velocity 
decreases due to viscous retardation. At a certain radial 
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Fig. 2. Nondimensional lilm thicknes\ versus radius at 
Rc, = 3184.71, Fr, = X.271 and R,, = 40.0. 

distance, the liquid film thickness increases very sharply 
leading to separation, corresponding to h = 3.0. The 
presence of the gravitational pressure gradient term in 
the governing momentum equation provides an adverse 
pressure gradient to the flow. The viscous retardation 
coupled with this adverse pressure gradient leads to sep- 
aration at a certain radius. 

The radius of separation represents a discontinuity 
in the liquid film thickness, connecting the supercritical 
region to the subcritical region. The flow can get over 
this discontinuity through a ‘shock’ or a hydraulic jump. 
corresponding to a critical Froude number. Thus it 
requires matching of the flow downstream of the 
hydraulic jump to the flow upstream. Just downstream 
of the jump a reversed flow region is present. The thin 
liquid film flows over this separation bubble and re- 
attaches further downstream. Such a How structure is not 
captured by the integral analysis. The hydraulic jump in 
experiments is more a gradual change in the height from 
the upstream supercritical region to the downstream sub- 
critical region rather than a discontinuity in height. The 
flow downstream of the hydraulic jump is under the 
dominant action of gravity and viscosity. The plate edge 
boundary condition of critical flow [see equation (37)] 
at the plate edge determines the height of the film just 
downstream of the matched hydraulicjump region. 

Figures 3 and 4 show, the comparison of the liquid film 
thickness measured for flow rates of 2.5 Ipm and 4.0 Ipm 
respectively. for two different sizes of the aluminum plate 
from experiments of Rao [ 141. The measured values are 
also compared with the film thickness variation obtained 
through integral analysis for the flow of such a radial 
thin liquid film. The figures show the effect of the plate 
radius on the height of the liquid film downstream of 
the hydraulic jump. For the smaller aluminum plate the 
hydraulic jump is pushed upstream and the elt’ect of the 

plate edge results in a higher liquid film thickness down- 
stream of the hydraulic jump. The measured liquid lihn 
thickness matches well with the liquid film variation 

- Numer. (Runge Kutta) 
0 Aluminum Plate 30.6 cm 

I n Aluminum Plate 20.5 cm j  

0.0-j ’ ’ ’ 
0.0 5.0 10.0 15.0 20.0 

Radius cm 

Fig. 3. Comparison of the measured and computed liquid film 

thickness upstream and downstream ofthe hydraulic jump. Flow 

rate = 2.5 lpm. 

0.0 ’ ’ ’ ’ 
0.0 5.0 10.0 15.0 20.0 

Radius cm 

Fig. 4. Comparison of the measured and computed liquid film 

thickness upstream and downstream of the hydraulic jump. Flow 

rate = 4.0 Ipm. 

obtained through integral analysis for the region 
upstream of the hydraulic jump. Downstream of the 
hydraulic jump there is a large difference in the measured 
and the computed values of the liquid film thickness and 
also in the behavior of the film height variation for the 
two different aluminum plates. The difference between 
the theory and the computations can be attributed to 
the following approximations involved in the integral 
analysis for the thin film flop. 

l As the tlow separates in the region of the hydraulic 
jump and realtaches further downstream, the 
governing equations are not strictly valid in the region 
of the hydraulic jump. The effects of surface tension 
become important in the region of the hydraulic jump 
due to the large efTects of curvature. Such effects are 
not taken into account in the integral analysis. Under 
actual flow conditions the hydraulic jump involves a 
gradual change in the liquid film thickness from the 
supercritical region to the subcritical region. Integral 
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analysis assumes a sharp discontinuity in the height at 
the separation radius. 

. Capillary gravity waves are found downstream of the 

. The analysis is not valid in the separated region of the 

hydraulic jump and carry with them energy and 
momentum. This contribution is not accounted for in 
both the integral analysis and in the derivation of the 
jump conditions. 

. We assume that the flow is choked at the plate edge. 
This assumption may not always be valid. In addition. 
surface tension effects at the plate edge, which may be 
significant, are also neglected. 

flow. 

The liquid film thickness upstream of the hydraulic 
jump is free of any of the effects mentioned above and 
this could be the reason for the approximate integral 
analysis matching well with the measured values. 

In Fig. 5 the free surface velocity is plotted versus 
the radial distance and the result compared with that of 
Watson [I] for the region upstream of the hydraulic jump. 
The free surface velocity decreases gradually from the 
average jet velocity in the developing region as we move 
towards the hydraulic jump in the fully developed region 
due to viscous retardation. The variation of the free sur- 

face velocity versus the radial distance downstream of 
the hydraulic jump is shown in Fig. 6. As contrary to the 
flow upstream of the hydraulic jump, the free surface 
velocity decreases and then increases at the edge of the 
plate. indicating acceleration from a subcritical to a criti- 
cal flow region at the plate edge. 

In Fig. 7, h, the coefficient in the velocity profile is 
plotted versus the radial distance. The value of h. changes 
from a negative value indicating a decreasing height, to 
a value of three, indicating separation at a particular 
radius. The velocity profile upstream of the hydraulic 
jump, changes from a Blasius type of profile in the 
developing region to one with an inflection point in the 
adverse pressure gradient region of the flow. Such vari- 
ations are made possible in this analysis as the coefficients 
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in the velocity profile are not constant and vary along the 
flow direction. 

As mentioned earlier the jet Froude number, the Reyn- 
olds number and the plate radius affect the flow charac- 
teristics. Keeping the jet Reynolds number, plate radius 
fixed and varying the Froude number, the location of the 
separation point moves downstream with an increase in 
the jet Froude number. The film thickness shows only a 
little change with Froude number as we near the jump 
region. This is because the effect of gravity is not impor- 
tant in this region and the viscous forces are not changing 
for this case of constant Reynolds number of the jet. In 
contrast the flow downstream of the hydraulic jump is 
under the dominant action of gravity and viscosity. We 
see an appreciable change in the film thickness as the jet 
Froude number is changed. The film height increases with 
an increasing Froude number and decreasing effect of 
gravity. 

Keeping the jet Froude number and the plate radius 
fixed, with a decrease in Reynolds number the efects 
of viscosity is dominant in the region upstream of the 
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hydraulic jump leading to separation at a much smaller 
radius compared to higher values of Re,. Downstream 
of the hydraulic jump a similar behavior continues and 
decreasing the Re, increases the film thickness due to 
increased viscous retardation. If  the Reynolds number 
of the jet is sufficiently large separation can totally be 
avoided over the given plate length and the thin film 
can be supercritical film till the plate edge. 

When thejet Reynolds number and the Froude number 
are held constant but the plate radius is varied, for a 
sufficiently small plate radius no separation is obtained 
on the plate as in Fig. 4. Increasing the plate radius leads 
to separation at a certain radius over the plate. A larger 
plate radius corresponds to a higher film thickness just 
downstream of the hydraulic jump (see Fig. 3 also). This 
can be explained as an increase in the plate radius leads 
to a corresponding decrease in the critical value of the 
film thickness at the plate edge [see equation (27)]. A 
decrease in the critical value of the height leads to an 
increase in energy just downstream of the jump, in the 
subcritical region, corresponding to an increased height 
of the film thickness just downstream of the hydraulic 
jump. 

10. Flow over surface of a cone 

For the radial thin film flow over the surface of a cone 
the effects of gravitational acceleration and the gravi- 
tational adverse pressure gradient counteract each other 
depending on the cone angle. 

Figure 8 shows the plot of the liquid film thickness 
versus the radial distance for a particular value of the jet 
Reynolds number, the Froude number. the length of the 
surface of the cone and different values of the cone angle. 
Radial film flow over the surface of the cone can occur 
without any flow separation. For the cone angles 
considered, the gravitational acceleration is much more 
dominant that the gravitational adverse pressure gradi- 
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Fig. 8. Nondimensional film thickness versus radius at 
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ent. This accelerates the flow as the liquid film thickness 
increases due to viscous retardation there by avoiding 
separation in the flow. There is no discontinuity in height 
at any radius as for the flow over a flat plate case. The 
liquid film thickness is continuous from the stagnation 
point till the edge of the plate. 

The free surface velocity decreases continuously from 
the stagnation point till the edge of the plate. Compared 
to the radial flow over a flat plate the decrease in the free 
surface velocity is much less due to the acceleration of 
the flow due to the dominant gravitational acceleration 
term in the governing equation. Figure 9 shows such a 
variation of the free surface velocity versus the radial 
distance. 

The jet Reynolds number, Froude number, the cone 
radius and the cone angle are independent parameters 
which affect the plate radius. Increasing the cone angle 
accelerates the flow, and the separation which takes place 
for flow over a flat plate can be avoided and the thin film 
flows as a supercritical flow till the edge of the plate. 

11. Flow over surface of a sphere 

The tlow of a thin liquid film over the surface of a 
sphere obtained by the impingement of a circular free 
laminar liquid jet forms a class of divergent convergent 
radial film flow. We neglect the gradient in film height 
term in the governing equations. This approximation is 
valid if the sphere radius is not large compared to the 
jump radius on a horizontal plate. 

Figure 10 shows the variation of the film thickness 
versus angle in degrees measured from one pole to other 
for a particular value of the jet Reynolds number. the 
Froude number and the sphere radius. Due to a divergent 
sphere surface from an angle of O--90 the area of the 
film flow increases and correspondingly the film height 
decreases. The free surface velocity as shown in Fig. 11 
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Fig. 9. Nondimensional surface velocity versus radius at 
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2766 A. Rae. J.H. Arclkeriilnt. J. Heur Tramfw 41 il998) 2757. 2747 

1.0 I I ’ I 
- Re=3184.71,Fr= 8.27,Rs =40.0 

0.8 - 

Angle (Degrees) 

Fig. 10. Nondimensional film thickness versus angle measured 
from pole of the sphere at Rr, = 3184.71. Fr, = 8.271 and 
R, = 40.0. 

I  I  1 I  

1.4 _ Re = 3184.71.Fr= 8.271, F&=40.0 

.g I.* 
8 1.0 

? 0.8 
8 o 0.6 
't 
$ 0.4 

0.0 50.0 100.0 150.0 200.0 
Angle (Degrees) 

Fig. 11. Nondimensional surface velocity versus angle measured 
from pole of the sphere at Re, = 3184.71. Fi, = X.271 and 
R, = 40.0. 

also decreases as the angle changes from O-90’. From 
9&180; the sphere has a converging surface and a 
decreasing area and to satisfy the continuity requirements 
the film thickness and the surface velocity increases. The 
present analysis breaks down near the angle of around 
180’ where the liquid film detaches from the sphere sur- 
face and falls down freely. 

As compared to the flow over a flat plate, the flow over 
the surface of the sphere always remains supercritical. 
The Froude number increases from OC90~‘. From 90-l 80 
the Froude number becomes negative due to the opposite 
direction of the gravitational acceleration. The Reynolds 
number of the flow decreases sharply from an angle of 0 
and reaches a minimum value around 90 It further 
gradually increases from 90-180 , corresponding to a 
considerable increase in the film thickness and a small 
increase in the surface velocity. The value of h. the 
coefficient in the velocity remains constant over almost 
the whole sphere angle having a value of around ~ I .2. 
For case of a parabolic velocity profile the value of 

h = - 1 .O. The velocity profile thus for the whole region 
of the flow remains very nearly parabolic. 

As for the case of the flat plate, Re,, Fr, and sphere 
radius are important independent parameters affecting 
the flow. Increasing the Fr, i.e. decreasing the effects of 
gravity increases the film thickness over the whole surface 
of the sphere. Keeping the value of the Frj and the sphere 
radius constant but increasing the Rej decreases the effects 
of viscosity and in turn makes the film thinner. For a 
fixed value of Rr, and Frj increasing the sphere radius 
increases the change in area encountered over the diver- 
ging and converging part of the sphere, there by decreas- 
ing the overall film thickness. 

12. Conclusions 

In this paper integral equations for the momentum and 
energy have been derived from the respective governing 
equations for the general axisymmetric flow of thin liquid 
films. A method of solution by assuming a cubic velocity 
profile for the film flow is proposed and applied to a few 
specific configurations. The coefficients of the poly- 
nomial. and thus the shape factor of the velocity profile, 
are allowed to vary with radial distance. 

For a radial thin film flow on a circular flat plate, based 
on the jet Reynolds number and the Froude number, 
separation of the thin liquid film flow can occur at a 
certain radial distance. Generally a circular hydraulic 
jump precedes the separation point and connects the 
upstream supercritical flow regime to the downstream 
subcritical flow. The plate edge boundary condition of 
minimum energy of the thin liquid film, affects the flow 
downstream of the hydraulic jump. For the case of flow 
over the surface of a cone. the cone angle 0 determines 
the dominance of the gravitational acceleration term over 
the adverse pressure gradient term. For large cone angles, 
a hydraulic jump is totally avoided and the thin film flows 
as a supercritical fihn all the uay till the plate edge. Thin 
film flow over ;I sphere remains supercritical in all the 
cases considered all the way from the top pole of the 
sphere to the bottom pole. The flow occurs under the 
dominant action of the gravitational acceleration, and 
the velocity profile remains nearly parabolic for the whole 
region of the film flow. 
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